Non-archimedean Big Picard Theorems
نویسنده
چکیده
A non-Archimedean analog of the classical Big Picard Theorem, which says that a holomorphic map from the punctured disc to a Riemann surface of hyperbolic type extends accross the puncture, is proven using Berkovich’s theory of non-Archimedean analytic spaces.
منابع مشابه
Non-Archimedean fuzzy metric spaces and Best proximity point theorems
In this paper, we introduce some new classes of proximal contraction mappings and establish best proximity point theorems for such kinds of mappings in a non-Archimedean fuzzy metric space. As consequences of these results, we deduce certain new best proximity and fixed point theorems in partially ordered non-Archimedean fuzzy metric spaces. Moreover, we present an example to illustrate the us...
متن کاملFixed Point Theorems for Single Valued Mappings Satisfying the Ordered non-Expansive Conditions on Ultrametric and Non-Archimedean Normed Spaces
In this paper, some fixed point theorems for nonexpansive mappings in partially ordered spherically complete ultrametric spaces are proved. In addition, we investigate the existence of fixed points for nonexpansive mappings in partially ordered non-Archimedean normed spaces. Finally, we give some examples to discuss the assumptions and support our results.
متن کاملSOME FIXED POINT THEOREMS FOR SINGLE AND MULTI VALUED MAPPINGS ON ORDERED NON-ARCHIMEDEAN FUZZY METRIC SPACES
In the present paper, a partial order on a non- Archimedean fuzzymetric space under the Lukasiewicz t-norm is introduced and fixed point theoremsfor single and multivalued mappings are proved.
متن کاملPositive-additive functional equations in non-Archimedean $C^*$-algebras
Hensel [K. Hensel, Deutsch. Math. Verein, {6} (1897), 83-88.] discovered the $p$-adic number as a number theoretical analogue of power series in complex analysis. Fix a prime number $p$. for any nonzero rational number $x$, there exists a unique integer $n_x inmathbb{Z}$ such that $x = frac{a}{b}p^{n_x}$, where $a$ and $b$ are integers not divisible by $p$. Then $|x...
متن کاملRigid Analytic Picard Theorems
We prove a geometric logarithmic derivative lemma for rigid analytic mappings to algebraic varieties in characteristic zero. We use the lemma to give a new and simpler proof (at least in characteristic zero) of Berkovich’s little Picard theorem [Ber, Theorem 4.5.1], which says there are no nonconstant rigid analytic maps from the affine line to non-singular projective curves of positive genus, ...
متن کامل